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A STUDY OF FLOW DEVELOPMENT IN MASS MOVEMENTS OF GRANULAR MATERIALS

by 

G.B. Crosta, P.S. Powers, and W.Z. Savage

INTRODUCTION

There is field evidence that zones of vanishing deformation, called here 
"dead zones", form near obstacles along the paths of mass movements such as 
earthflows, debris flows, mudflows, and landslides. For example, in debris 
flows in the Alps, Appennines, and in other areas of the world, the formation 
of dead zones has been observed. The armoring of structures by dead zones and 
consequent preservation of structures directly in the path of the flow, on low 
inclination slopes, or the formation of dead zones of debris behind check dams 
occur. In addition, earthflows, debris flows and mud flows commonly show 
central zones of rigid or plug flow which are often bounded by lateral levees.

We have conducted a number of experiments to study and observe the 
formation of these features and the development of flow in regions where an 
obstacle is present using a base friction table. The base friction 
experiments simulate the flow of a granular material under conditions of 
steady flow either in an unconfined or confined state. Initial analysis of 
the experimental data suggests that this technique gives a good representation 
of the gravity flow of granular materials in a channel with obstructions of 
different types along the path. Further, it seems possible to apply such a 
technique to similar problems in soil mechanics involving granular materials 
such as deformation below shallow and deep foundations and flow in bins and 
hoppers. In what follows we present some preliminary results on velocity and 
deformation rate fields from these experiments and indicate briefly how these 
results might be applied to the development of dead zones and attendant 
features in naturally occurring mass movements.

The interpretation of these experiments is based on the theory of 
plasticity. In particular, we have followed, at least partially, the 
methodology suggested by Pariseau (1966). We review these topics in the next 
section.

THEORY OF PLASTICITY

Numerous models have been developed to account for the flow of granular 
materials. Many of these models originated from studies of the flow behavior 
of granular materials in silos, bins, and hoppers of different shapes 
(Janssen, 1895; Airey, 1897; Caquot, 1957; Jenike, 1955; Johanson, 1962; 
Deutsch and Clyde, 1967; Mandl and Fernandez-Luque, 1970; Reimbert and



Reimbert, 1976; Drescher, 1976; Drescher et al., 1978), or flow of broken rock 
in mining operations (O'Callaghan, 1960), sublevel caving (Kvapil, 1965), ore 
pass movement (Pariseau, 1966), or with tectonic faulting (Ode, 1960; Crans 
and Mandl, 1981) and gravitational sliding of loose or slightly consolidated 
sediments (Sokolovski, 1960; Szczepinski, 1972; Bruckl and Scheidegger, 1973; 
Savage and Smith, 1986). These referenced authors have found that the theory 
of plasticity adequately describes the gravitationally driven flow of cohesive 
and frictional materials when the flow is steady and the medium behaves like a 
homogeneous and isotropic continuum.

The plasticity of granular materials differs from the plasticity of 
metals. These differences occur because the relationships between stress and 
strain rate, the flow rules, are more complicated for granular materials. 
This complexity can, in.part, be attributed to the mechanical properties of 
granular materials and to difficulties encountered in the observation of 
experiments. It is well known that increasing the confining pressure causes 
an increase in the strength of a granular material. Thus, when dealing with 
granular materials it is necessary to replace the Von Mises yield condition, 
adopted in perfect plasticity, with a yield condition that explicitly takes 
into account the hydrostatic pressure. As noted by Drescher (1976), flow 
rules for granular materials can be divided in two main categories: 
associated flow (Drucker and Prager, 1952; Hill, 1950; Shield, 1953, 1954; 
Jenike and Shield, 1959; Rowe, 1962; Roscoe et al., 1963; Schofield and Wroth, 
1968; Roscoe, 1970) or non-associated flow (Geniev, 1958; De Jong, 1959; 
Spencer, 1964; Drescher, 1976; Mandl and Fernandez-Luque, 1970). The first, 
associated flow, postulates coaxiality of the tensors of stress and strain 
increment. The second, non-associated flow, takes the two tensors to be non- 
coaxial. Since one of the aims of our research is to compare experimentally 
developed velocity fields with theoretical velocity fields, we will discuss 
these aspects of plasticity in greater detail in this section.

The theory of plasticity represents a necessary extension of the theory 
of elasticity and is concerned with the analysis of stresses and strains in 
materials in the plastic range. The theory seeks to establish relationships 
between stress and strain rate which adequately describe the observed 
deformation under complex stress states. A fundamental principal of 
plasticity theory is that if the stress at a point in an elastic material 
exceeds the material strength at that point, then the material will fail and 
flow inviscidly. Due to the inviscid nature of the motion, there is no 
relation between stress and rate of deformation, the time variable does not 
enter into the stress-strain formulation, and thus we can speak of strain 
rates in terms of strain increments.

In a flowing material the stresses must satisfy the three equations of 
motion, which, in the static or quasi-static case, reduce to the equations of 
equilibrium written in cartesian tensor notation as:



'i-

ax,. +FTO (l)

where FJ represents the body force components per unit volume.

In addition to the six stress components, there are three displacement 
(or velocity) components which are also functions of position and time and 
which can be related to the stresses through an appropriate stress-strain 
(constitutive) relation. Constitutive relations assume different forms for 
different kinds of materials. For elastic materials, the constitutive 
relationships are given by Hooke's Law,

(2)-

Here, A, is Lame's constant, p. is the shear modulus, and the strains are 
given by

where ud are the displacement components and xi are the coordinates in the 

reference (undeformed) state.

In the case of plastic flow, the rate of deformation, t ±j , is related 

to the stress, o^, by six rules of flow:

tii=l,'Hii(ou ) (4).



Here the plastic strain rates are given by,

*

A is a non-vanishing scalar function of time and space, x^ is the

coordinate in the undeformed state, and Hi:j is a known function of material 

properties.

If elastic strains are negligible in comparison to the plastic strain, 
equation (5) describes the total strain rate for a perfect rigid plastic 
material.

For plastic flow to occur, the yield condition must be satisfied. This
condition means that the material will deform permanently at a point whenever
a certain relationship amongst the stresses at that point is satisfied:

ir (oi ,)=0 (6).i J *

This relationship is usually expressed as a function of the stress invariants, 

Y(Iit J2 , J3 ) =0 . In the present case, the yield condition is taken to be

the Coulomb yield criterion, in terms of major and minor principal stresses, 
a, and o, :

  A i-3 , ^ A   tt\ -sin<l>+ i i  -k-cotan$=Q (7)

where <J> is the angle of internal friction and k the cohesion of the material. 
In terms of stress components in arbitrary x,y cartesian coordinates, equation 
(7) becomes:

(8)

where H = k cotg<|> (Sokolovski, 1960). We now have a yield condition that is
function of the hydrostatic pressure. Here, the influence of the hydrostatic
pressure is introduced through the angle of internal friction (<|>).



Generally, three-dimensional plastic flow problems are intractable (Ode, 
1960), so flow is assumed to occur in plane strain. For a plane strain 
problem, deformation is allowed to occur only in two dimensions, for example, 
in the x-y plane, while the strains in the third direction are equal to zero. 
We have, then, two equilibrium equations and one yield function forming a 
statically determinate system of three equations in the three unknown stresses 
under appropriate stress boundary conditions. Stresses that satisfy the 
Coulomb criterion are given by

ox=o [l+sin<|>cos2a] +H (9a) 

oy=o [l-sin<|>cos2a] +H (9b)

(9c)

where

0 = Ji [ox+0y] +H (10)

a is the angle between the x-axis and the most compressive principal stress 
in the x-y plane.

Substituting the above equations for stresses into the equilibrium 
equations leads to the following partial differential equations:

[l+sin<bcos2a] ----- 
ax ax ay ay

= pgsinQ (lla) 

and

-a- + [l-sind>cos2a] --- 
ax ax oy dy

= pgcosQ (Hb).



Here, for gravitational body force, p is the density, g is the gravitational

acceleration, and 6 is the angle between the horizontal and the ground 
surface. This result yields two equations for the four derivatives

^r- 1 ^r- 1 ^- 1 ^-   We can add two more equations, the equations of the 
dx oy ox oy

total derivatives, yielding a system of four equations in four unknowns. This 
system can be solved for o and a and by the method of characteristics
(Abbott, 1966; Savage and Smith, 1986). The stress field then follows from 
equations 9.

Physically, it seems unreasonable for the stress and velocity field not 
to be connected and, in fact, the method of characteristics leads to a 
solution for the velocity field as well as stresses along a set of 
intersecting characteristic curves. The characteristic curves are also known 
as slip lines and are paths for the propagation of discontinuities inside a 
plastically deforming material. These curves represent the integration of a 
hyperbolic system that has two real roots for each point and, therefore, two 
real characteristic slopes. Discontinuities are thus propagated in two 
directions through the space, and a pair of characteristic curves (two 
families of isogonal curves) may pass through every point in that space. 
Discontinuities are jumps in the particular quantity under discussion, either 
stresses or velocities. The amount of this jump is the difference between the 
values of the same quantity before and after some particle crosses a certain 
zone. Physically, a velocity discontinuity is a thin zone, or a distinct 
narrow zone (Drescher et al., 1978), of intense shear through which there is a 
rapid change in magnitude and direction of the velocity vector and often of 
density. In the case of velocity discontinuities, the law of the conservation 
of mass must be obeyed. This law, in fact, requires that the inflow and the 
outflow of mass per unit time across a discontinuity must be equal. In the 
case of stress discontinuities, the physical law that must be considered is 
that of equilibrium or conservation of linear momentum.

The equilibrium equations are transformed to the canonical forms 
(Courant and Friedrichs, 1948; Pariseau, 1966) along the characteristic curves 
as:

^L=tan[a+(   --£)] -- along a 1st characteristic line, (12a)

^l=tan[a-(   -- £)]-^- along a 2nd characteristic line, (12b)
ds2 4 2 as2



+2o'tain$-^--Ki -^-=Q along a 1st characteristic line, (12c)

2 --=Q along a 2nd characteristic line, (12d)
ds2 ds2

where the independent parameters sif s2 represent arc lengths, respectively,

along the 1st and 2nd characteristic curves. The two coefficients, kif k2 , 

introduced in the system are:

-Fy-cos (a-n) ]
[cos<|>cos (a+u.) ] 

a+u) -F-cos (
[cos<|)cos (a~

where JA=[   --] , and Fx,Fy represent the body force components:
rr

Fy=pg-cosQ

The solution of this system, for a gravity flow problem, is complicated by the 
introduction of the body forces acting in the material. As an approximation, 
we can neglect the body forces in the case that (Pariseau, 1966):

where pg is the specific weight of the material, L is the typical depth,
and k the cohesion. If this holds, one can ignore the contribution of the 
body force terms in the analysis of steady flow of granular materials. On the 
other hand, if the materials are cohesion!ess, body force terms must not be 
ignored in modeling the experimental flow.



SOLUTION FOR EXTRUSION OF A PERFECTLY PLASTIC MATERIAL

When <i , as would be the case in the flow of highly cohesive
K.

frictional materials, the gravity terms ( kit k2 ) can be neglected and the 

governing system of equations reduces to:

  -4)3-^- along a 1st characteristic line, (16a) 
4 2 cte-

ds2 4 2 as2
along a 2nd characteristic line, (16b)

along a 1st characteristic line, (16c)

-2o-tan<|>-^-=0 along a 2nd characteristic line (16d).
ds2 ds2

In fact, as Pariseau (1966) shows, gravity flows of such materials can be 
treated approximately by integration of the above equations. In addition, for 
materials where 4> is small, or equal to zero, the governing system of 
equations reduces to:

  ] - along a 1st characteristic line, (17a) 
4 ds-

ds2 4 ds2
-  3 - along a 2nd characteristic line, (17b)

_J_

-^ =0 along a 1st characteristic line, (17c)

_j_
=0 along a 2nd characteristic line (17d).

ds2

8



These are the governing equations for the case of a purely cohesive material, 
a Von Mises material which has the yield criterion:

A. [0x-0 ]2+ 0^=;c 2 (18)

This criterion can be obtained from the Coulomb yield criterion by making 4> 
0. Solving this system according to the method of characteristics outlined 
above (Abbott, 1966), we obtain the characteristic directions:

) (19)

o

Thus, we can see that due to the absence of friction, the directions of the 
maximum and minimum shear lines, respectively called 1st and 2nd
characteristic lines, in the x-y plane, are obtained with rotations of ± 45
with respect to the principal directions of stress. These are the 
characteristic relationships adopted in metal plasticity (Hill, 1950; Prager 
and Hodge, 1951; Thomsen et al., 1966). Hill (1950) demonstrated that the 
plastic equations are hyperbolic and that, for this kind of material, the 
characteristics of stress and velocity coincide, and therefore only two 
distinct characteristic directions can be found at each point, and the 
resulting lines are called sliplines.

Integrating along each characteristic, we determine the Riemann 
invariants:

c+2ka= constant along a 1st characteristic line, (20a) 
and

o-2ka= constant along a 2nd characteristic line (20b)

For a Von Mises material, only maximum shearing stresses exist along 
characteristic lines and the normal stress is equal to the mean stress. Hence, 
no extension can take place along slip lines and, thus,

du =0 (21a)
ds1 

and



dv =0 (21b)
ds2

These last equations can be written in terms of a as Geiringer's equations 
(Hill, 1950):

du-vda=Q along a 1st characteristic line (22a) 

and

dv-uda=Q along a 2nd characteristic line (22b).

Expressions for the stress components in x and y, which satisfy the yield 

condition in terms of o and a , are

ax=a-k-cos2a (23a), 

ay=a+k*cos2a (23b),

(23c)

where o =  *[ox+oy] .
^

A number of numerical techniques, based on geometrical theorems, have 
been used to solve the characteristic equations for stress and velocity 
fields. Such theorems and numerical techniques are discussed in detail in 
textbooks on plasticity (Hill, 1950; Prager and Hodge, 1951; Sokolovski, 1960; 
Thomsen et al., 1966). We give here only a brief summary of the geometrical 
theorems.

The two fundamental theorems are called Hencky's theorems. The first 
theorem states that the angle between the tangents to one family of slip- 
lines, at the intersection with the slip-lines of a second family, is constant 
along the length of the slip-lines of the first family. It is clear that if a 
segment of a slip-line is straight, then all the corresponding sections of any 
other line of the same family are also straight. Then, according to the 
Riemann invariants and Geiringer's equations (equations 20 and 21), if one 
family of slip-lines is straight, the hydrostatic pressure and the total 
velocity are constant along each line of that family. The second theorem

10



states that as we travel along a slip-line, the radii of curvature of the 
slip-lines of the other family at the points of intersection change by the 
distance traveled. The numerical solution of the system of characteristic 
equations is obtained by a step-by-step numerical integration along the slip- 
lines, by replacing the derivatives by the tangents or finite differences. 
The computation starts from curves along which the boundary conditions are 
given and proceeds to points which discretize the space inside the region of 
plastic flow limited by the boundary curves the region of influence. In 
order to solve the problem, the nature of the boundary conditions is the most 
important factor. Generally, three types of boundary problems can arise. The 
first is the Cauchy problem, when all the variables are known on a curve not 
coincident with a characteristic. The second is the Gourset or Riemann 
problem, in which the variables are known at two points of two different 
intersecting characteristic lines. The last is the mixed boundary problem, 
where one slip-line is given together with a curve along which a is known 
(e.g., the centerline or the walls in an extrusion problem).

EXPERIMENTAL THEORY AND METHODOLOGY

Since this study is concerned with gravity-driven flow of granular 
material, the first problem was to choose a way to simulate this kind of flow 
in the laboratory. Gravity-driven flow can be simulated in three different 
ways: by using an inclined plane, a centrifuge apparatus, or a base friction 
table.

For these experiments, material flow is realized by means of a base 
friction table. In rock mechanics, this apparatus is commonly used to 
simulate gravity-induced defonnation of solids, but here, the base friction 
table is used to simulate the flow of loose granular materials against 
obstructions. These materials are either nearly frictionless or cohesionless, 
are either confined or unconfined, and brought as nearly as possible to 
steady-state flow conditions in which inertial forces are absent. The 
apparatus consists of an electric motor, two rollers, and a rubber belt. The 
motor can be connected by means of a rubber belt to five pulleys of different 
sizes which permit five different velocities. The largest pulley, which gives 
the slowest velocity (0.18in/s = 0.46 cm/s), has been employed in our 
experiments.

Before describing the experimental technique, it is useful to review 
briefly the theory of the base friction table (Hoek, 1971; Bray and Goodman, 
1981). The fundamental idea is that the base friction table simulates the 
action of gravity in a two-dimensional physical model by means of the drag 
force acting along the base of the physical model. These forces are the 
combined result of the belt movement, under the model, and the contrasting 
action of a fixed obstacle.

11



Physically, the drag force created by the belt along the base of the 
model is resisted by the base friction force, Fb, (see fig. 1) acting in the 
horizontal (xy) plane of the model. The increment of the drag, dT, under a 
small slice, dx, of material is:

tdxdy (24)

where \ib is the coefficient of friction between the model and the moving 

belt, Y 1S the unit weight, and t is the thickness of the physical model.

Under gravity, the body force acting on an element is :

dF^tdxdy (25).

Comparing the last two equations, the analogy between the action of gravity 

and drag force, proportionally related by \Lb , is clear and so the validity

of the experimental technique follows. For a model of uniform width (w), the 
base friction force at "depth" x is:

where p is a confining pressure applied on the upper surface of the model 
(Egger, 1979).

DESCRIPTION OF THE EXPERIMENTAL TECHNIQUE

One aim of this experimental research is the generation of data for 
comparison with the theoretical solutions to be presented below for the flow 
of granular materials in plane strain conditions. Another aim is the study of 
the development of morphological features, both in confined and unconfined 
conditions. A final aim is to check the validity of the adopted experimental 
technique for the study of gravity-driven flow of granular materials. In 
particular, the comparison with theoretical solutions involves the collection 
of experimental velocity data to reconstruct velocity characteristics and the 
principal stress field. Different experimental techniques have been adopted 
in studies of gravity flow of bulk materials.

12
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Generally, a variety of particle tracking techniques phosphorescent 
powder (Pariseau, 1966), X-ray with small lead balls (Drescher et al., 1978), 
labeled markers inserted in the material (Li Yenge, 1980) have been used to 
follow the movement of material (sand, mixtures of sand with copper or 
magnetite, glass spheres, small angular rock fragments, etc.) inside bins or 
hoppers of different shapes.

The original base friction apparatus designed for rock mechanics 
simulations, at the University of Colorado (Boulder), has been modified to 
satisfy our requirements. Two channels of different widths (12 and 24 in. or 
30.5 and 61 cm for 41 in. or 104 cm of length) (fig. 2) and a series of 
obstacles were prepared to simulate narrowing along the path (with normal or 
inclined sides) and obstructions in the middle of the main channel (normal or 
inclined). The narrowing of the channel is described below by means of the 
ratio between the width upstream and the width downstream of the obstruction 
(the extrusion ratio). In the experiments, three values of the extrusion 
ratio (E.R. in Tables I and II) were used: 1.5, 2, and 3. The apparatus was 
also modified by the addition of a thick (0.5 in. or 1.27 cm) plexiglass plate 
to constrain the material from dilatation in the vertical direction (z-axis) 
and to simulate plane (confined) flow conditions.

The experiments were carried out with two types of dry granular 
material: flour (to simulate a cohesive, frictionless material) and sand (a 
frictional-conesionless material) (see Table I and II). The former was simple 
white cooking flour, small enough to pass through the 100 sieve (0.149 mm) but 
larger than a 200 sieve mesh (0.074 mm). The uniformity of the sand is 
represented in the grain-size plot (U = uniformity coefficient = 1.75) (see 
Table III). Angles of friction were measured, by means of a direct shear 
test, for the materials and the contact surface between sand or flour and 
plexiglass. The angles of internal friction were 40°-44° for the sand and 
10°-14° for the flour. The friction angle for the contact between sand and 
plexiglass was 30° and less than 10° for the contact between flour and 
plexiglass. The material was placed on the conveyor without any particular 
technique and the bulk densities, obtained using the known weight and volume, 
were always in a restricted range (see Table IV and V).

The particle tracking technique, for the confined experiments, consisted of 
spraying black paint through a peg-board to create small dots and using white 
or black spray paint, respectively, on sand and flour to draw regularly spaced 
transversal lines. The size of the mesh constituting the grid was different: 
1 in. (2.54 cm) and 3/4 in. (1.9 cm), respectively, for a 24 and a 12 in. wide 
channel. The paint used in this operation was of the flat type to avoid 
increasing the moisture content of the material. In the unconfined 
experiments, the grid was generated by indenting the material surface with a 
plastic grid (eggshell form). This gave a square mesh of 0.6 in. (1.5 cm) 
spacing. In this way, a series of regular straight grooves were created.
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Table III. Grain-size analysis for the sand.

Grain Size Analysis

Sieve

..
20
40
60
80
100
120
Finer

Size (mm)

1.70
0.85
0.42
0.25
0.18
0.15
0.125
.....

Finer
(grn)
823.8
594.1
64.3

8.6
3.2
1.7
1.2
1.2

Percent 
Passing

100.00
72.12

7.81
1.05
0.39
0.21
0.15
0.00

Grain Size Analysis Plot
Percent

100 -

v»

n .

i
S

\̂

ar
I

^t
K

I
I

i

|Is
SB,  i     -

Vi

10.0 1.0 0.1 

(Size in mm.)

0.01
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Table IV. Bulk density values computed for unconfined and 
confined experiments on sand.

IVIM 1 CniMU       ** OMWLS

Bulk Density (g/cm3) loose = 1 .347
cyvrcniivicix i vviuin   i z.

slightly compacted = 1 .492
BULK DENSITY

E.R.

2 
2 
3 
3

Thickness
inches

1 
2 
1 
2

UNCONFINED
Initial
g/cm3
1.499 
1.379 
1.441 
1.438

Final
g/cm3
1.711 
1.443 
1.607 
1.563

Dead z.
g/cm3

1.70-1.83 
1.90-2.12 
1.53-1.54 
1.41-1.43

Time
sec
128 
118 
128 
108

CONFINED
Initial
g/cm3
1.463 
1.447 
1.494 
1.452

Final
g/cm3
2.230 
1.566 
1.816 
1.526

Time
sec

221

Table V. Bulk density values computed for unconfined and 
confined experiments on flour.

MM i cniML     * ruuun

Bulk Density (g/cm3) loose = 0.557
CA.rcniivicix i vviuin   i^

slightly compacted = 0.766
BULK DENSITY

E.R.

2
2
2
3
3
3

Thickness
inches

1
1
2
1
1
2

UNCONFINED
Initial
g/cm3
0.585
0.620
0.595
0.615
0.640
0.614

Final
g/cm3
0.657
0.660
0.703
0.703
0.706
0.745

Dead z.
g/cm3

0.68-0.74
0.75-0.79
0.74-0.76
0.67-0.68

0.70
0.77

Time
sec
123
129
127
125
124
117

CONFINED
Initial
g/cm3
0.590
0.602
0.613
0.631

0.598

Final
g/cm3
0.990
0.920
0.771
0.938

0.760

Time
sec
161
146

208

266
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These grooves persisted for the duration of the experiments and could be made 
visible by illuminating the surface at a low angle.

To obtain information on mass balance, weighing was carried out on both 
types of experiments. For purposes of weighing, material of the confined 
experiments was subdivided into two volumes. Material passing through the 
inside of the narrow channel and material remaining behind or upstream of the 
obstruction were weighed separately. In the case of the unconfined 
experiments, the material was weighed in 5 regions (fig. 3) in the bulged 
dead zones, in the compacted dead zones, in the levees, in the channel, and in 
material remaining behind the obstruction. The separation of bulged and 
compacted dead zones and of levees and channel material is represented by the 
plane of original thickness (t) in figure 3. During weighing, the various 
regions were separated by thin (<0.1 in. or <0.254 cm) plexiglass sheets.

Another variable introduced in the experiments was the thickness of the 
material to evaluate its influence on the velocity distribution in the 
horizontal x-y plane as well as in the vertical x-z plane. Two thickness 
values were adopted: 1 and 2 in. (2.54 and 5.08 cm).

To maximize the information from the experiments, all experiments were 
filmed with a video camera, which stores images in a digital format. To avoid 
strong optical distortion, we used the maximum possible distance between video 
camera and material. By means of a graphic board, we were able to capture 
images from the video camera to a computer. These images were then digitized 
directly on a computer screen by means of a program written for this purpose. 
In addition to the video tapes, 35 mm pictures were taken with a reflex camera 
during all the experiments.

DESCRIPTION OF TYPICAL FEATURES IN THE FLOW EXPERIMENTS

Features typical of gravity flow of granular material, as reported in 
many experimental studies (Johanson, 1962; Pariseau, 1966; Ladanyi and Hoyaux, 
1969; Drescher, 1976; Drescher et al., 1978; Li Yenge, 1980) can be recognized 
from careful examination of the results of the experiments. Further, some of 
the observed features can be compared to the features described in structural 
geology experiments (Hubbert, 1951) and soil mechanics experiments 
(Sylwestrowicz, 1953). In the following, we summarize these features 
considering separately the confined and unconfined experiments.

Confined experiments

The first feature to appear, a few seconds after initiation of belt 
movement, is the boundary between the plastic zone (regions A and B in figs. 4 
and 5) and the rigid plug (region C) represented by line d-g in figure 5. The 
plastic zone consists of two fans upstream of the step or obstacle in the flow

20
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Figure 4. Subdivision of the plastic 
region and location of 
the dead zone.

e

Flow Direction

ER=3

Figure 5. Sketch representing the plastic region, limiting boundaries 
and the adopted reference system (compare with fig. 4).
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channel and a core of high velocity flow. Only one fan (region A) and one- 
half the high velocity core (region B) are represented in figure 5 for reasons 
of symmetry. The plug (region C in figs. 4 and 5) is formed by the material 
that moves rigidly inside the narrower channel, downstream of the obstacle. 
The plug boundary d-g (see fig. 6 for a funnel-shaped channel) is predicted by 
theory (Hill, 1950; Abbott, 1966; Pariseau, 1966) to be inclined

at ±(   -£) from the y-axis. It represents a jump, that is, a velocity
4 ^

discontinuity, in the field. The appearance of this discontinuity is
different for the flour and the sand. The plug boundary for the flour
appears as a pair of intersecting fractures, inclined generally at 45°

( ±1° ) to the + and - y-axes followed by the formation of parallel fractures
repeated at almost regular intervals inside the material (see the right side 
of fig. 7). The inclination of these fractures is predicted by plasticity 
theory, as will be seen later, for a cohesive material with an angle of 
friction, 4> = 0°. With continuation of the movement, downstream of the 
obstacle, separation of the two faces of the fractures sometimes occurs 
accompanied by the appearance of horizontal slickensides. This phenomenon 
seems to be exactly comparable with the one described as bridging (or arching, 
doming, plugging, hanging up) in the literature (Pariseau, 1966). It is 
represented by a continuous series of collapsing arches during the gravity 
flow of a bulk material.

For the sand, a pair of intersecting discontinuities inclined at 

65°( ±2° ) to the + and - y-axes forms the plug boundary (see again fig. 4).

These angles are the angles estimated by plasticity theory for a frictional 
material with an angle of internal friction of 40°-44°. Bridging occurs in 
the sand, but it is more continuous and its action is shown by the stretching 
of points passing through the plug boundary. This is consistent with the 
behavior of a frictional material at a velocity discontinuity.

The evolution of the boundary between the rigid and plastic regions 
upstream from the obstacles is of particular interest. In fact, the evolution 
of this feature can generate many problems in the interpretation and modeling 
of gravity flow of granular material (Pariseau, 1966; Jane!id and Kvapil, 
1966; Li Yenge, 1980). As flow continues to the point where the set of main 
lateral discontinuities, which have developed inside part A of the fan, reach 
the free surface at the rear of the model (figs. 8A, 8B, and 8C), we observe a 
rapid disappearance of the plug boundary or the transformation of the sides of 
the plug boundary from straight to curved. These velocity discontinuities 
occur as shear zones of various thicknesses along velocity characteristics 
and, after the first compaction or dilatation due to the initial state of the 
material, their thickness remain unchanged. When the main lateral curvilinear 
discontinuities reach the free surface at the rear of model (left boundary

23



Figure 6. Rigid plug boundary for a 
confined experiment with sand and 
a funnel-shaped obstacle.

rigid plug boundaries transported 
into the narrow/ channel

Figure 7. Rigid plug boundary for a confined experiment on flour and an
extrusion ratio of three. Dead zones and velocity discontinuities are also 
visible. _____________________
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Figure 8A. Confined experiment 
(24 in. wide channel, extru 
sion ratio = 3) on sand 
showing the main velocity 
discontinuities and core 
flow.

Figure 8B. Main lateral 
discontinuities reaching 
the free surface in a 
confined experiment on sand 
(12 in. wide channel, extru 
sion ratio = 3).

Figure 8C. Development of 
lateral discontinuities 
and formation of a conical 
depression at the free 
surface in a confined 
experiment on sand with 
funnel-shaped obstacle and 
a 12 in. wide channel.



of the material in figs. 8, 9), material inside these curvilinear 
discontinuities behaves rigidly. This is shown by the transversal lines 
(painted on the surface) which remain undisturbed (fig. 9) as they approach 
the narrow channel. In this way we have rigid zones included between pairs of 
velocity discontinuities distributed symmetrically with respect to the 
centerline. Thus, a "core flow" type of movement is established in the 
central part of the material for which the theory of plasticity is not 
applicable. This "core flow" appears comparable with phenomena occurring 
during drawdown in silos and during drawdown of broken rock in underground 
mining. These phenomena have been usually analyzed by the draw ellipse flow 
model (fig. 10) described by Janelid and Kvapil (1966) and Li Yenge (1980).

Finally, note that the evolution of these discontinuities causes the 
formation of a conical depression in the free surface and the movement of 
material along the sides of this curvilinear cone toward the axis of symmetry. 
This serves to feed material to the central region of high velocity (fig. 9) 
and can explain subsidence phenomena often observed over underground 
excavations (fig. 10).

The dead zones (fig. 11) become more and more defined with the 
continuation of the flow. Generally, for the sand, the inclination of the 
dead zone boundary, with respect to the obstacle, lies between 58°-64°. 
Further, this boundary seems to remain almost straight for the duration of the 
experiment. For flour, there is high compaction of the material in the dead 
zone and the dead zone boundaries are curved (figs. 12, 13). The dead zones 
appear to develop in three different phases during the test. The first phase 
is the appearance of a rigid, immobile, triangular region (fig. 12). The 
second and third phases are constituted by the addition of a new sector to the 
original dead zones or the partial transformation of the original dead zones 
by compaction and then shearing of the material (compare figs. 12 and 13). In 
figures 12 and 13, the angle formed by the dead zone boundary and the obstacle 
is in the range 57°-65°.

A difficulty in outlining the dead zone is caused by the finite 
thickness of the shear zones that constitute its boundary. These shear zones 
increase in thickness and importance, passing from an almost frictionless 
material to a purely frictional material, and they can be a function of the 
size and shape of the grains. The limiting velocity discontinuities for the 
flour coincide with thin shear zones because of the alignment of the platey 
particles with the directions of shear. In loose sand, the shear zones 
increase in thickness with respect to the flour, as a consequence of the 
dilatant behavior of frictional material. We will discuss the importance of 
these effects in a later section.
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Figure 10. Draw ellipse model 
(Janelid and Kvapil, 1966).

Figure 9. Development of a conical 
depression in a confined sand 
experiment.

Figure 11. Rigid plug boundary 
and we11-developed dead zones 
in a confined flour experiment,



Figure 12. Confined flour experiment showing the first stage in the 
development of the dead zones and some we11-developed velocity 
discontinuities.
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Figure 13. Confined flour experiment showing the final stage of dead 
zone evolution with sheared, compacted, and rigid zones.
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The formation of dead zones upstream from an obstacle, positioned in the 
middle of the channel, is similar to the evolution of the dead zones during 
channel narrowing. This situation simulates the response of soil to driving 
of a sheet pile (Meyerhoff 1951, 1959; Vesic, 1967) and is similar to the 
problem studied by Ladanyi and Hoyaux (1969). The development of the dead 
zone follows the same three phases described above for the case of a narrowing 
channel, but the final result is more clearly observed. At the beginning, for 
infinitesimal strains, the rigid dead zone is triangular, but with prolonged 
movement and larger (finite) deformations, the dead zone becomes semicircular 
with a cap of highly compacted and sheared material (figs. 14A, B (flour); 
14C (sand)).

To observe the vertical distribution of horizontal velocities in the 
confined experiment, we used vertical blue chalk layers inside the flour or 
white flour inside the sand. The distribution of the velocity is almost 
linear close to the center line (locations A and Al in fig. 15) while, near 
the sides (locations B and C in fig. 15), the slope increases and the pattern 
becomes more parabolic. The minimum velocity is found at the top of the 
material. This is due to the friction or adhesion exerted by the confining 
plexiglass plate. The maximum velocity is at the base of the material, at the 
contact with the conveyor surface. This basal velocity increases and reaches 
a maximum inside the narrow channel. At the channel entrance (location Al in 
fig. 15), the slope of the velocity distribution curve decreases strongly, 
giving the maximum difference in velocity between the top and the bottom of 
the material. Within the dead zones (location D in fig. 15), the velocity is 
zero for the entire thickness with the exception of the base where the drag 
action of the belt is still important.

After removal of the confining plexiglass, swelling of the included 
material is noticeable. For example, for an original 2 in. (5.08 cm) thick 
flour layer, we measured swelling approximately 12.5%.

Unconfined experiments

The unconfined experiments permit the study of phenomena associated with 
steady state flow of unconfined material through a narrowing channel or 
against an obstacle placed in the channel. The phenomena studied are: the 
movement of the central part of the material as a rigid plug, the formation of 
bulging dead zones, and the formation of lateral levees (fig. 16). The 
movement of the central part of the flow as a rigid plug is shown by the grid 
inpressed on the material. This is typical behavior, both upstream and 
downstream of the obstacle, for a large part of the material and indicates 
that the velocity is constant everywhere in this area. This behavior is made 
possible by the deformation developed inside the dead zones and the lateral 
levees.
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Figure 14A. Confined flour 
experiment showing the dead 
zone formation near an 
obstacle positioned in the 
middle of the channel.

Figure 14B. Identification of 
some dead zone features for 
finite, large deformations 
in a confined experiment on 
flour.

rigid dead zohi 
CB*rriicirculaiO

Figure 14C. Confined experiment 
in sand with a central obstacle, 
Notice the same features 
observed in the two previous 
figures.
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Vertical Velocity Distribution
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D

Flow Direction
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Flow Direction

B

Z L. J-
Belt Surface

D t

Figure 15. Vertical distribution of the horizontal velocity observed 
in a 2 in. thick experiment conducted on flour.

32



Figure 16. Unconfined experiment 
in flour; the main features are 
shown in the figure.

Figure 17A. Unconfined flour 
experiment showing semi 
circular steps (in plane 
view) in the first stage 
of development of a dead 
zone.

Figure 17B. Sets of fractures 
developed during the final 
stage of dead zone development,



The growth of the dead zones is more easily observed during the 
experiments conducted with flour than with sand. This is because the flour 
has cohesion, so deformed shapes tend to be maintained. The sand lacks 
cohesion, and features in the sand are covered or rounded by the rolling of 
the sand grains up to their angle of repose (30°-34°). In plan view, the dead 
zones grow in a semicircular shape (fig. 17A) against an obstacle placed in 
the middle of a channel. This is followed by the formation of a straight set 
of fractures inclined at 65°-75° (fig. 17B), with respect to the obstacle. 
This set is sometimes accompanied by a secondary set at 90° to the obstacle. 
The inclined set bounds a triangular dead zone. Upstream from the dead zone, 
parallel sets of inclined shear fractures form. The material included between 
the parallel fractures moves rigidly and the velocity of different rigid 
blocks increases moving away from the dead zones.

In cross section, the growth in the dead zones is indicated at the 
surface by small steps coincident with the semicircular dead zone limits 
observed in plan view. These small steps disappear with the bulging of the 
dead zone and the maximum height is reached close to the edge of the obstacle 
in correspondence with the narrowing of the channel. Using two horizontal 
layers of blue chalk, intercalated with flour in an experiment with a 
narrowing channel, we notice that the material is folded and faulted with 
slight relative movement (fig. 18). The surface of the main fold is 
crenulated by several small scale folds (see again fig. 18). This result is 
similar to results obtained in the sand box experiments conducted by Hubbert 
(1951) to study the formation of fold belts. In a successive phase, 
fracturing isolates the dead zone as a triangular wedge. The deformation 
associated with the sets of vertical fractures which isolate the wedge (fig. 
19) is recognizable in the stepped pattern of the blue layers within the shear 
zones (fig. 20A) and under the levees (fig. 20B).

The construction of the levees proceeds with a certain delay after the 
beginning of the movement and coincides with the development of the shears 
limiting the dead zones.

Generally, although the dead zones and levees grow contemporaneously, 
the height of the levees is less than that of the dead zones. The levees grow 
downstream from and in continuity with the sheared boundaries of the dead 
zones (fig. 19). This is particularly clear for the flour. For the sand, the 
shear zones are generally obscured and the starting point of the levees is 
indicated by a small surficial groove at the boundary of the dead zone 
parallel to the direction of flow (figs. 21 and 22A). Inside the narrow 
channel, downstream of the obstacle, the levees remain straight. Other 
structures associated with the levees and noticeable inside the narrow 
channel, especially in the sand, are small grooves. These grooves are 
transversal to the levees and point backward from the sides of the channel 
toward the center line. These grooves are obscured in the flour. Finally, we
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Figure 18. Longitudinal cross 
section of a dead zone in 
an unconfined experiment on 
flour (flow from right to 
left).

Figure 19. Fractures and 
bulging dead zones in 
the proximity of the 
channel orifice 
(extrusion ratio = 1.5).
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Figure 20A. Transversal 
cross section, upstream 
of the orifice, looking 
downstream. Steps in 
the blue chalk layers 
were caused by the 
differential velocities 
inside the shear zones.

Figure 20B. Transversal 
cross section, down 
stream from the orifice, 
Steps in the blue chalk 
are visible under the 
lateral levees.
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Figure 21. Unconfined sand 
experiment showing the 
bulged dead zones and the 
groove indicating the 
origin of the lateral 
levees (ER = 3).

Figure 22A. Systems of velocity 
discontinuities that reach the 
free surface in an unconfined 
experiment on sand.

Figure 22B. Evolution of the
conical depression induced by the 
action of the velocity disconti 
nuities. The rigid core is 
also shown.



observed that the levees are usually larger in the case of a funnel-shaped 
channel. This may be due to the presence of a smaller dead zone together with 
a larger bulging zone than occurs when the channel narrows by a step.

If the experiments proceed for enough time, there is a point at which 
the fast central rigid core reaches the rear limit of the material and tension 
cracks and reverse faults develop (figs. 23A and B (flour); figs. 22A and B 
(sand)). The reverse faults have the same curvilinear shape as the 
discontinuities described in the confined experiments and bound the central 
rigid plug from the obstacle to the rear.

In the case of a central obstacle the most important features are the 
reverse faults which depart from the edge of the obstacle. These 
discontinuities are inclined at the beginning of their formation and become 
normal to the obstacle with the continuation of the movement (see fig. 24, 
where these discontinuities are labeled 1st and 2nd to show the order of 
formation). The discontinuities are comparable to the features described in 
the case of a narrowing channel because of symmetry. Their development is 
followed by the development of normal faults subdividing the wedge of material 
pushed backward. These results are similar to results obtained by Sanford 
(1959) on the problem of deformation of a sedimentary cover overlaying an 
uplifted or downdropped rigid crystalline block.

Mass balance

We have also evaluated the mass balances involved in the experiments. 
To do this, the material both in the confined and unconfined experiments, was 
separated in different regions (fig. 3) and the separated material was 
weighed. The results, some of which were repeated to check their validity and 
reproducibility, are reported in figure 25 where the percentage in weight is 
plotted against the extrusion ratio, the thickness, and the type of material. 
In figure 25, for example, 3.IF represents an extrusion ratio of three and a 1 
in. thick layer of flour. Compacted dead zones, as defined previously, have 
vertical thicknesses equal to the original vertical thickness of the material. 
It is evident that the type of material and the thickness have no influence on 
the mass balance while the extrusion ratio controls the size of both bulged 
and compacted dead zones. The quantity of material stored in these regions 
increases and that passing through the channel decreases, respectively, with 
increasing extrusion ratio. Thus, as the outflow channel narrows, more 
material will be stored in the dead zones.

Using the appropriate computed volumes for each region, the computation 
of the bulk density was carried out, for the confined and unconfined 
experiments, at the beginning of the test, before any deformation takes place, 
and at the end of the test on the material remaining in the channel. The bulk 
density of the compacted dead zone has been computed in the case of the
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Figure 23A. Systems of curved 
strike-slip faults (or reverse 
faults), tension cracks, and 
fractures inside the flour.

Figure 23B. Detail of the system 
of fractures, tension cracks, 
and strike-slip faults (or 
reverse faults) developed in 
the rear part of the material.

rigid plug   
cor* flow

Figure 24. Velocity disconti 
nuities generated by the 
backward-pushing action of a 
central obstacle (1st and 2nd 
show the order of formation).
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unconfined experiments. The results are given in Tables IV and V. Note the 
inverse relationship between the thickness of the material and the bulk 
density at the end of the confined experiments. In other words, for the 
confined test, the material in the thinner layer is more compacted.

The time duration is the time necessary for the same final material 
configuration to be reached in each similar experiment. This final 
configuration is obtained by stopping the experiments at a fixed distance from 
the obstacle. A distance of 8.5 in. (21.6 cm) has been chosen because it 
leaves the dead zones undisturbed. Considering the total time duration of 
each weighed experiment, we tried to obtain the discharge or the rate of 
growth of the dead zones and levees for different materials, extrusion ratios, 
and thicknesses (Tables VI and VII). In general, we notice a decrease in the 
duration of the experiment with increasing thickness. Further, we notice that 
for flour and sand, different relationships exist between the rate of growth 
of the dead zones, rate of growth of the levees, and the discharge of material 
passing through the channel (all measured in g/sec).

COMPARISON OF THE EXPERIMENTAL RESULTS WITH THEORETICAL SOLUTIONS

Since theoretical solutions exist only for two-dimensional flow, we are 
limited to comparing the confined tests with theory. For the unconfined 
tests, we can, at best, consider only the mass balance introduced previously 
and summarized in Tables IV, V, VI, and VII.

In the comparison between the data from the confined experiments and 
solutions for plane flow, we assume that the experimental flows are isotropic 
Thus, for the flow,

(27)

where a is the angle between the x-axis and the major principal stress and 

ox , oy , o^,, tx , ty , t^ are the components of stress and rate of deformation

tensor acting in the deforming x-y plane. The plastic strain rates, for a 
particular point observed during deformation, are computed from,

b dy dx r y By , D,
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Table VI. Rate of growth for levees and dead zones and
discharge through the channel unconfined and 
confined experiments on flour.

MATERI Al      >
r^ ̂  ^ FLOUR

UNCONFINED CONFINED
E.R.

2
2
2
3
3
3

Thickness
inches

1
1
2
1
1
2

Levees
g/sec
2.5
3.2
4.1
3.0
4.0
4.5

Bulk. D.Z.
g/sec

2.2-2.5
2.4-2.9
4.2-5.0
3.7-4.3
4.0-4.2
7.1-7.7

Channel
g/sec
13.0
14.1
26.0
10.4
10.8
21.1

Time

129
123
127
124
125
117

Channel

14.0
13.7

11.1
16.8

Time

161
146

208
266

Table VII. Rate of growth for levees and dead zones and
discharge through the channel unconfined and 
confined experiments on sand.

IVIAA 1 Cr\IAM_       -^ OAM1IU

UNCONFINED CONFINED
E.R.

2
2
3
3

Thickness
inches

1
2
1
2

Levees
g/sec
6.3
12.0
7.5
10.8

Bulk. D.Z.
g/sec
13.1
25.2
21.4
42.3

Channel
g/sec
32.8
57.5
23.7
45.9

Time

128
118
124
108

Channel

28.1

Time

221



where u and v represent the components of velocity acting in the x-y 
direction, respectively, while the z-components are all equal to zero as a 
consequence of the plane strain conditions. The negative signs are due to the 
adoption of the soil mechanics sign convention, considering compression and 
contraction as positive. Substituting the strain rate equations in the 
condition of isotropy gives:

tan2a= . (29).

This relationship shows that the velocity field, u = u(x,y) and v = v(x,y), 
and, hence the strain rate field obtained from the experiments can be used to 
reconstruct the field for the principal strain rate and stress directions. 
Additionally, we can obtain the sliplines since the sliplines are inclined at

an angle ^=±(JL--i) with respect to the major principal stress.
~r £»

To develop these computations, we adopt dimensionless values for all the 
velocity components. The dimensionless velocities are obtained by dividing 
the field velocity value by the approach velocity of the material (Vo, 
indicated by the arrows in fig. 5), that is, the velocity of the undeformed 
material upstream from the plastic region. Velocity plots have been prepared 
for different stages of the experiments. Generally, because velocities are 
slow, the analysis has been conducted on images taken every 3 or 5 seconds. 
This gives visible displacements with a minimum change in the direction of the 
velocity vector. The plots generated with the dimensionless values are: 
total displacement and spacing of the grid points versus x, u versus y, v 
versus x, and strain rates with x and y. The spacing versus x plots were 
prepared for each image to visualize the possible compaction of the material 
and the jump in the velocity components in the vicinity of velocity 
discontinuities.

To describe the procedures adopted to process the experimental data, we 
have chosen an experiment conducted on sand with an extrusion ratio equal to 
three and a channel size of 12 in. (30.5 cm). This width value is preferred 
because it permits a better development and, hence, observation of the flow 
than can be obtained with the 24 in. (61 cm) channel.

The original configuration of the grid placed on the sand was digitized 
and is shown in figure 26. The configuration of the grid after 45 seconds is 
shown in figure 27. The flow is toward the right and in a direction parallel 
to the x-axis. In figure 27, we have superposed the subdivisions shown in 
figures 4 and 5 for the plastic, rigid, and dead zones. We can observe the 
presence of the rigid zone with a perfectly preserved grid upstream of the 
plastic region. The plastic region to the right of the rigid zone is 
characterized by a symmetrical convergence of the points towards the axis of
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Figure 26. Equally spaced grid at the beginning of a sand
experiment. Extrusion ratio = 3. The spacing is equal 
to 0.75 in.(1.9 cm).
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Figure 27. Deformed grid after 45 sec. Extrusion ratio = 3. (Flow 
from left to right).



symmetry. Also in the figure, we can see shortening of distances between 
originally equally spaced points representing compaction and relative movement 
of points representing shearing along the lateral discontinuities.

Streamlines inferred from the movement of points are shown in figure 28A 
and can be compared with the experimental streamlines obtained by Pariseau 
(1966) (fig. 28B). Figure 29 shows the way in which the different alignments 
of points in figures 26 and 27 are identified and numbered. The position of 
discontinuities and dead zones can also be inferred from the distribution of 
displacement increments shown in figure 30. The dashed lines in figure 30 
represent the configuration of regularly spaced points at 40 seconds and the 
solid lines represent the configuration of the same points at 45 seconds after 
the start of the experiment. We notice the absence of motion in the dead 
zones (isolated points represented by solid and empty squares in fig. 30) and 
the increase in velocity after crossing each velocity discontinuity. This 
jump in the velocity is represented by small steps along the lines.

Figure 31 shows the change in spacing of the grid points in the x 
direction (parallel to the flow) for various rows of points in the y direction 
numbered according to figure 29. The spacing values are nondimensionalized 
with respect to the initial value of the grid spacing (0.75 in. or 1.9 cm). 
Knowing the displacement and the elapsed time, we can compute and plot the two 
dimensionless velocity components (Vx/Vo, Vy/Vo). As a consequence of such 
nondimensionalization, the velocity of the rigid part of the material upstream 
of the plastic zone is equal to one and in other regions is represented as 
multiples of this value. The various curves represented in figures 32 and 33 
are the velocity components computed for various alignments of points numbered 
according to the convention shown in figure 29. The plots give us an idea of 
the increment in the velocity components as material moves toward the 
centerline and approaches the channel orifice.

The velocity values can be compared with the values obtained by Pariseau 
on the basis of experimental results and theory (Pariseau, 1966). Pariseau 
conducted gravity flow experiments on the problem of ore pass movement, using 
a mixture of sand and magnetite (angle of internal friction = 34°). His 
experiments and ours have similar geometrical constraints. Figure 34 is an 
isovel map, of the total velocity vector, prepared from our experimental data 
at 45 seconds. Compare this with figure 35 taken from Pariseau. Note that 
figure 34 represents the left half and figure 35 the right half of the 
experimental velocity field in the outlet region. Also, note that figure 35 
and subsequent figures we reproduce from Pariseau (1966) were considerably 
idealized by him. Our figures, on the other hand, have not been idealized, as 
the reader can gather.
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-U.o-

-3.C-1

-2.0-

-1.0-

0.0

STREAMLINES
In the Outlet Region 
During Drawdown.

(Pariseau, 1966)

x (c*nterline) ,w ' (inch*?)2iO 
fc(orifice edge)

Figure 28B. Experimental streamlines obtained by Pariseau for an
experiment with similar geometrical constraints (extrusion 
ratio = 3).
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DISTRIBUTION OF DISPLACEMENT INCREMENTS (5 seconds)

25.00 --

20.00 --

15.00 --

10.00 --

5.00 --

0.00

0.00 10.00 20.00 30.00 

X-axis (CM)

40.00 50.00 60.00

Figure 30. Distribution of displacement increments. Plot of 5 rows of points 
from two consecutive images. Dashed lines: position after 40 sec.; solid 
lines: position after 45 sec.
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Figure 31. Plot of the variation of the grid spacing vs. x 
values are nondimensionalized.
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X = 5 

X= 10 

X= 12 

X= 14 

X= 15 

X = 20

3000
-0.50

Y-axis (cm)

Figure 32. Plot of Vx/Vo vs. y. The X values in the legend indicate the 
number of the row of points, from the origin toward the orifice.

X-axis (cm)

Figure 33. Plot of Vy/Vo vs. x. The Y values in the legend indicate the 
number of the row of points counting upward from the origin.
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Once the velocity has been determined, we can compute the strain rates. 
The contour plots of the three coordinate strain rates, computed using 
equations 28a, b, and c, are shown in figures 36A, B, and C. Substituting the 
computed strain rate values in equation 27, the condition of isotropy, we 
obtain the angle a between the major principal direction and the x-axis. The 
principal stress trajectories, which are coincident with the trajectories of 
the principal rate of deformation, assuming associated flow, have been 
computed for 30 seconds and are shown in figure 37A. The result is similar to 
that obtained by Pariseau (reproduced here as fig. 37B).

Now, simply by addition of the angle |i=± (JL--i) , we obtain the
4 2

velocity characteristic directions. Velocity characteristics obtained at 30 
seconds from the start of the experiment are shown in figures 38A and 39A for 
two different assumptions: dilatant material, where <)> = angle of internal 
friction, and incompressible material, where <)> = 0°. Again, these results can 
be compared with the results obtained by Pariseau (1966) (figs. 38B and 39B) 
and are similar to the results obtained by other researchers (e.g., Johanson, 
1962).

Finally, following the geometrical theorems and the proposed numerical 
solutions quoted in the chapter on the extrusion of perfectly plastic 
materials, a computer program has been developed to generate characteristic 
curves for stresses and velocities, under conditions of maximum and minimum 
friction along the sides of the channel and for different values of the 
extrusion ratio (the ratio between the widths of the channel upstream and 
downstream of the obstruction). Some plots representing the characteristic 
field and the distribution, direction, and magnitude of velocity are presented 
for the case of an extrusion ratio equal to 3 (figs. 40A, 40B, 41A, 41B). In 
the figures, the flow of the material is from the left to the right, parallel 
to the x-axis, and only half of the solution is shown for symmetry reasons. 
In figures 40A and 41A, the crosses show the directions for each of the two 
sets of characteristic lines (lines representing the directions for the 
maximum and minimum shear stress) for discrete points in the numerical mesh. 
Unit length in the diagrams is represented by the radius of the circular arc 
centered at the origin of the fan (0,0) at the upper edge of the obstacle and 
intersecting the center!ine at the point of coordinates (-0.707, 0.707). The 
total velocity vectors computed for each point in figures 40A and 41A are 
shown in figures 40B and 41B. The magnitudes of the total velocity vectors 
are expressed in multiples of the velocity in the rigid part of the material, 
that is, the material on the left of the fan. These figures can be compared 
with experimental data presented for our flour experiments (figs. 12, 13, and 
14A). We notice that the experimental dead zone geometry obtained in these 
experiments is similar to the dead zone geometry predicted by the theory in 
the case where there is maximum friction along the sides (fig. 41A).
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EXTRUSION RATIO = 3 - TIME = 30 sec 
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Figure 36A. X-strain rate component (after 30 sec)
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Figure 36B. Y-strain component (after 30 sec).
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SLIP-LINE SOLUTION EXTRUSION RATIO = 3

Extrusion problem with no side friction

fvjow direction

0.60 -

X
D
| -0.40

-1.40 -1.40
-1.50 -0.50

X-axis

Figure 40A. Theoretical characteristic field (directions of maximum and 
minimum shear stresses) for a purely cohesive material with minimum 
friction along the channel sides.
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TOTAL VELOCITY VECTORS
EXTRUSION RATIO = 3 

Extrusion problem with no side friction

Flow direction = = = = = = = =

0.60

00

X
O
| -0.40

-1.40

- **<':*;*;*;
7,' :; -///// "'"''"''i'

f r / '

Dead zone

-1.50 -0.50

X-axis

Centerline
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Figure 40B. Theoretical velocity field for a purely cohesive material 
with minimum friction along the channel sides.
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DISCUSSION OF APPLICABILITY OF THE PLASTICITY SOLUTIONS

In modeling the flow, we have assumed homogeneity and isotropy of 
material and unbreakability of the grains. Most importantly, we have assumed 
that principal strain rate and principal stress axes are coincident during 
flow. We have seen that this gives good agreement between experimentally and 
theoretically determined principal stress orientations (figs. 37A and B).

Since we have assumed an associated flow rule, we expect that the volume 
of the deforming material will increase during confined flow when 4> > 0 
(Savage and Smith, 1986). However, we have seen that the thickness of shear 
zones remain constant for the duration of our experiments. In addition, our 
velocity field for sand shown in figure 34 is comparable to the velocity field 
from Pariseau for a similar material (fig. 35). Also, our experimental 
streamline field in figure 28A and Pariseau 's experimental streamline field in 
figure 28B are comparable. Pariseau (1966) and Pariseau and Pfleider (1969) 
found a disagreement between the theoretical velocity and streamline field, 
computed using the angle of internal friction of the material, and their 
experimental velocity field and streamlines. Repeating the computation using 
a value of internal friction of zero, the incompressibility condition, they 
found better agreement between the theoretical and experimental velocity and 
streamline fields. Since figures 28A (for streamlines), 34 (for velocities 
for our sand experiment), 28B (for streamlines), and 35 (for velocities from 
Pariseau) are similar, we can infer that our experimental velocity data should 
be modeled by taking 4> = angle of internal friction to be zero. Indeed, 
although a detailed comparison has not yet been made between velocities 
obtained from the flour experiments and the theoretical extrusion velocities 
for a perfectly plastic material, we do see similarities even though the flour 
angle of friction average is 12°.

Experimentally, as in the experiments described above, it has been 
observed that all materials, after contraction or dilatation during the 
initial phases of deformation, depending on the original density, approach a 
critical state during which deformation occurs at constant volume (cv) 
(Castro, 1969; Poulos, 1981). For this reason, Houlsby and Wroth (1980) 
assume that intensely sheared zones and adjacent rigid zones have different

properties. They take $=$peak ,v*Q in the rigid zones

and ^Hw^ea*' v=0   tne intensely sheared zones where v is the angle of

dilatation. As mentioned above, Pariseau (1966) arrived at a similar solution 
by reconstructing the stress and velocity fields from experimental data and 
concluded that the best approximation of such data through the theory is 
obtained using a value of 4> = 0.
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Another consequence of using an associated flow rule and, hence, 
coaxiality of principal directions of strain rate and stress (Pollaczek- 
Geiringer, 1930; Shield, 1953, 1954; Davis, 1968; Roscoe, 1970) is that a 
velocity discontinuity may only occur on a velocity characteristic. This 
means that no extension can occur along a velocity discontinuity. Houlsby and 
Wroth (1980) present a classification of kinematic discontinuities and discuss 
the inextensibility requirement. They prove that the inextensibility 
requirement for a velocity discontinuity, in its direction of development, is 
unnecessary. An important example where the strain discontinuity must be 
considered inextensional, in order to satisfy the compatibility requirements, 
is the case for contact with a rigid zone or a dead zone (region of no 
movement and deformation). Previous authors derived this inextensibility 
condition, applied at any velocity discontinuity, on the bases of various and 
often invalid assumptions. For example, Prager and Hodge (1951) assumed that 
the velocity variations along the discontinuity must be negligible as compared 
to those across it. In this way, Prager and Hodge (1951) neglect the fact 
that the presence of velocity gradients inside discontinuities will cause the 
deviation of the velocity discontinuities from the characteristics.

In any ideal plastic analysis, the approach is the same as the approach 
used for a limit analysis and, as a consequence, the material is considered to 
be everywhere at yield at the same instant. As we have seen from describing 
the experiments, this behavior is improbable. It is more probable that only 
some portions of the material will reach the failure condition 
contemporaneously and, for a certain interval of time, growth of the plastic 
region will occur in a quasi-static manner with negligible accelerations up to 
a condition of steady state. Furthermore, even if the material behaves like a 
plastic material, the theory does not insure that all the sliplines will be 
activated. What is actually observed during the experiments is the 
development of only some velocity discontinuities due to the activation of a 
small number of sliplines. This situation can be compared and perhaps 
analyzed by the theory of formation of shear bands for frictional materials 
(Rudnicki and Rice, 1975; Molenkamp, 1985). In fact, physically, the real 
situation is one in which some rigid parts slide relative to each other 
because of the presence of these few velocity discontinuities (De Jong, 1959; 
Pariseau, 1966; Drescher, 1976; Drescher et al., 1978).

CONCLUSIONS

We have seen that there are qualitative similarities between the 
confined experiments and plane plastic flow of bulk materials. These 
similarities are seen in the development of the theoretically predicted 
regions A and B (the regions of plastic flow) and the development of region C 
(the rigid plug) in channel flow (figs. 4 and 5). Of course, these observed 
similarities are limited to velocities, velocity discontinuities, and 
deformations, since we did not measure stresses inside the materials.
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Certain aspects of the experimental confined flow are exactly predicted 
by the theory. For example, the boundary between regions B and C; the rigid 
plug boundary is 45° for flour and 60°-65° for sand. Also, the observed 
orientations of the shear zones which form the boundary between the dead zones 
and the plastic fan in channel flow are those predicted by the theory. For 
the flour, this boundary is curved and becomes tangent upstream with the 
channel sides. This behavior is predicted for extrusion flow of a cohesive 
plastic material in the case where the walls of the channel are frictional 
(figs. 41A and 41B; Thomsen et al., 1966). Another important feature is the 
formation of compacted, sheared, and rigid dead zones in the confined 
experiments.

Also, for sand and flour, the experimentally determined velocities are 
in qualitative agreement with those determined theoretically. For the flour, 
the velocities are similar to those determined by the solution for extrusion 
of cohesive materials through a narrowing channel. For the sand, the 
experimental velocities compare with those computed by Pariseau (1966) using 
classical plasticity theory for frictional materials and adopting the 
incompressibility condition.

For the unconfined flow, many of the features observed have natural 
analogues. Some, such as the zones of vanishing deformation (dead zones), 
which form near obstacles, lateral levees, and the movement of central parts 
of landslides as rigid regions bounded by shear zones, have been reported in 
the landslide literature (Fleming and Johnson, 1989; Crandell and Varnes, 
1961). Many of these features have also been observed for glaciers (Nye, 
1951, 1957, 1973; Coll ins, 1970).

We have also observed features in the experiments that presumably have 
natural analogues but have yet to be observed in the field. For example, the 
evolution of features such as the main lateral discontinuities (figs. 8A, 8B, 
and 8C), the development of faulting within the dead zones (fig. 19), and 
rates of levee growth (Tables VI and VII) in natural mass movements should be 
measured and compared with the experimental data.

Finally, certain refinements should be considered in future experimental 
and theoretical work. For example, load cells should be incorporated for 
direct measurement of pressure along the sides of the channel and in the front 
of the obstacles. A finer grid should be used for better resolution of 
velocities and a mechanical deposition technique should be used to obtain a 
more uniform starting density for the material used in the experiments. Also, 
methods should be developed to reduce effects of compaction during the 
experiments and to accomplish continuous feeding of the material during the 
experiments. This last refinement would eliminate the effects of the free 
surface at the rear of the model and allow experiments of greater duration to 
be conducted. Theoretical refinements should include the development and 
application of constitutive equations, which properly describe the
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relationships between stress and strain rate as well as the development of 
discrete zones of shear and attendant phenomena within the deforming material.

REFERENCES

Abbott, M.B., 1966, An introduction to the method of characteristics: New 
York, American Elsevier, 243 p.

Airey, W., 1897, Theory of silos: London, Institution of Civil Engineers, 
Minutes of Proceedings, v. 31, p. 347-358.

Bray, J.W., and Goodman, R.E., 1981, The theory of base friction models: 
International Journal for Rock Mechanics and Mining Science, v. 18, 
p. 453-468.

Bruckl, E., and Scheidegger, A.E., 1973, Application of the theory of
plasticity to slow mud flows: Geotechnique, v. 23, no. 1, p. 101-107.

Caquot, A., 1957, La pression dans les silos in Proceedings, 4th International 
Conference on Soil Mechanics and Foundation Engineering, London: 
Butterworths Scientific Publications, 1958 eds., vol. Ill, p. 191-195.

Castro, G., 1969, Liquefaction of sands: Cambridge, Massachusetts, Harvard 
University, Harvard Soil Mechanics Series No. 81, January 1969, 112 p.

Collins, I.F., 1970, A slip-line field analysis of the deformation at the
confluence of two glacier streams: Journal of Glaciology, v. 9, no. 56, 
p. 169-193.

Courant, R., and Friedrichs, K., 1948, Supersonic flow and shock waves: New 
York, Interscience.

Crandell, D.R., and Varnes, D.J., 1961, Movement of the Slumgullion earthflow 
near Lake City, Colorado: U.S. Geological Survey Professional Paper 
424-B, paper 57, p. B136-B139.

Crans, W., and Mandl, G., 1981, On the theory of growth faulting; Pt. lib, 
Genesis of the "unit": Journal of Petroleum Geology, v. 3, no. 3, 
p. 333-355.

Davis, E.H., 1968, Theories of plasticity and failure of soil masses, in Lee, 
I.K., ed., Soil Mechanics Selected Topics: London, Butterworths, 
p. 341-380.

65



De Jong, G. de Josselin, 1959, Statics and kinematics in the failable zone of 
a granular material: Delft, Amsterdam, Uitgenerij Waltman, Ph.D. 
thesis, 119 p.

Deutsch, G.P., and Clyde, D.H., 1967, Flow and pressure of granular materials 
in silos: Proceedings of the American Society of Civil Engineers, 
Journal of Engineering Mechanics Division, v. 93, p. 103-125.

Drescher, A., 1976, An experimental investigation of flow rules for granular 
materials using optically sensitive glass particles: Geotechnique, v. 
26, no. 4, p. 591-601.

Drescher, A., Cousens, T.W., and Bransby, P.L., 1978, Kinematics of the mass 
flow of granular material through a plane hopper: Geotechnique, v. 28, 
no. 1, p. 27-42.

Drucker, D.C., and Prager, W., 1952, Soil mechanics and plastic analysis or 
limit design: Quarterly of Applied Mathematics, v. 10, no. 2, 
p. 157-165.

Egger, P., 1979, A new development in the base friction technique:
Proceedings, Symposium on Physical-Geomechanical Models, ISMES, Bergamo, 
Italy.

Fleming, R.W., and Johnson, A.M., 1989, Structures associated with strike-slip 
faults that bound landslide elements: Engineering Geology, v. 27, 
p. 39-114.

Geniev, G.A., 1958, Questions on the dynamics of granular media (in Russian): 
Moscow, Akad. Str. Arch.

Hill, R., 1950, The mathematical theory of plasticity: Oxford University 
Press, 355 p.

Hoek, E., 1971, Rock Engineering (Inaugural lecture): London, Imperial 
College, Univsity of London.

Houlsby, G.T., and Wroth, C.P., 1980, Strain and displacement discontinuities 
in soil: Journal of Engineering Mechanics Division, v. 106, p. 753-771.

Hubbert, M.K., 1951, Mechanical basis for certain familiar geological
structures: Geological Society of America Bulletin, v. 62, p. 355.

Janelid, I., and Kvapil, R., 1966, Sublevel caving: International Journal for 
Rock Mechanics and Mining Sciences, v. 3, p. 129-153.

66



Janssen, H.A., 1895, On the pressure of grain in silos: Institute of Civil 
Engineers, v. 124, p. 553-555.

Jenike, A.M., 1955, How to keep solids flowing in bins and hoppers: 
Engineering and Mining Journal, v. 156, no. 3a, p. 83-85.

Jenike, A.M., and Shield, R.T., 1959, On the plastic flow of Coulomb solids 
beyond original failure: Journal of Applied Mechanics, v. 27, p. 599- 
602.

Johanson, J.R., 1962, Stress and velocity fields in gravity flow of bulk 
solids: University of Utah, 170 p.

Kvapil, R., 1965, Gravity flow of granular materials in hoppers and bins:
International Journal for Rock Mechanics and Mining Sciences, v. 2, p. 
25-41, p. 277-304.

Ladanyi, B., and Hoyaux, B., 1969, A study of trap door problems in a granular 
mass: Canadian Geotechnical Journal, v. 6, p. 1-15.

Li Yenge, I., 1980, Analysis of bulk flow of materials under gravity caving 
process. Part I: Sublevel caving in relation to flow in bins and 
bunkers: Colorado School of Mines Quarterly, Vol. 75, October 1980, 
no. 4, 45 p.

Mandl, G., and Fernandez-Luque, R., 1970, Fully developed plastic shear flow 
of granular materials: Geotechnique, v. 20, no. 3, p. 277-307.

Meyerhof, G.G., 1951, The ultimate bearing capacity of foundations: 
Geotechnique, v. 2, p. 301-332.

Meyerhof, G.G., 1959, Compaction of sands and bearing capacity of piles: 
Proceedings, American Society of Civil Engineers, Journal of Soil 
Mechanics Foundations Division, v. 85, SM6, p. 1-29.

Molenkamp, F., 1985, Comparison of frictional material models with respect to 
shear band initiation: Geotechnique, v. 35, no. 2, p. 127-143.

Nye, J.F., 1951, The flow of glaciers and ice-sheets as a problem in
plasticity: Proceedings, Royal Society, Series A, v. 207, no. 1091, 
p. 554-572.

Nye, J.F., 1957, The distribution of stress and velocity in glaciers and ice- 
sheets: Proceedings, Royal Society, Series A, v. 239, no. 1216, 
p. 113-133.

67



Nye, J.F., 1973, The motion of ice past obstacles, in Whalley, E., Jones, 
S.J., and Gold, L.W., eds., Physics and chemistry of ice: Ottawa, 
Canada, Royal Society of Canada, p. 387-394.

O'Callaghan, J.R., 1960, Internal flow in moving beds of granular material: 
Journal of Agricultural Engineering Research, no. 5, p. 200-217.

Ode, H., 1960, Faulting as a velocity discontinuity in plastic deformation, in 
Griggs, D., and Handin, J., eds., Rock Deformation: Journal, Geologic 
Society of America, Memoir 79, p. 293-321.

Pariseau, W.G., 1966, The gravity induced movement of materials in ore passes 
analyzed as a problem in Coulomb plasticity: University of Minnesota, 
Ph.D. thesis, 218 p.

Pariseau, W.G., and Pfleider, E.P., 1969, Soil plasticity and the movement of 
material in ore passes: ASME Transactions, p. 42-56.

Pollaczek-Geiringer, v.H., 1930, Beitrag zum vollstandigen ebenen
plastizitatsproblem: 3rd International Congress of Applied Mechanics, 
Stockholm, Sweden, v. 2, p. 185-190.

Poulos, S.J., 1981, The steady state of deformation: Proceedings, American 
Society of Civil Engineers, Journal of Geotechnical Engineering 
Division, v. 107, p. 553-562.

Prager, W., and Hodge, P.G., 1951, Theory of perfectly plastic solids: New 
York, Dover Publics., 264 p.

Reimbert, M., and Reimbert, A., 1976, Silos: Theory and Practice, Trans Tech 
Publications, 1st Ed., 239 p.

Roscoe, K.H., 1970, The influence of strains in soil mechanics: Geotechnique, 
v. 20, no. 2, p. 129-170. (Tenth Rankine Lecture)

Roscoe K.H, Schofield, A.M., and Thurairajah, A., 1963, Yielding of clays in 
states wetter then critical: Geotechnique, v. 13, no. 3, p. 211-240.

Rowe, P.M., 1962, The stress dilatancy relation for static equilibrium on an 
assembly of particles in contact: Proceedings, Royal Society, Series A, 
v. 269, p. 500-567.

Rudnicki, J.W., and Rice, J.R., 1975, Conditions for the localization of 
deformation in pressure-sensitive dilatant materials: Journal of 
Mechanics and Physics Solids, v. 23, p. 371-394.

68



Sanford, A.R., 1959, Analytical and experimental study of simple geologic 
structures: Geologic Society of America Bulletin, v. 70, p. 19-52.

Savage, W.Z., and Smith, W.K., 1986, A model for the plastic flow of
landslides: U.S. Geological Survey Professional Paper 1385, 32 p.

Schofield, A.N., and Wroth, L.P., 1968, Critical state soil mechanics: 
London, McGraw-Hill, 310 p.

Shield, R.T., 1953, Mixed boundary value problems in soil mechanics: 
Quarterly of Applied Mathematics, v. 11, p. 61-75.

Shield, R.T., 1954, Stress and velocity fields in soil mechanics: Journal of 
Mathematics and Physics, v. XXXIII, no. 2, p. 144-156.

Sokolovski, V.V., 1960, Statics of soil media: London, Butterworths 
Scientific Publications.

Spencer, A.J.M., 1964, A theory of the kinematics of ideal soils under plain 
strain conditions: Journal of Mechanics and Physics Solids, v. 12, 
p. 337-351.

Sylwestrowicz, W., 1953, Experimental investigation of the behavior of soil 
under a punch or footing: Journal of Mechanics and Physics Solids, 
v. 1, p. 258-264.

Szczepinski, W., 1972, On the motion of flat landslides and avalanches treated 
as a problem in plasticity: Warsaw, Architectural Mechanics Stosowonej, 
v. 24, no. 5-6, p. 919-930.

Thomsen, E.G., Yang, C.T., and Kobayashi, S., 1966, Mechanics of plastic
deformation in metal processing: New York, The MacMillan Co., 485 p.

Vesic, A.S., 1967, Ultimate loads and settlements of deep foundations in 
sands: Symposium on Bearing Capacity and Settlement of Foundations, 
Duke University, Durham, North Carolina, 1965, p. 53-68.

69


